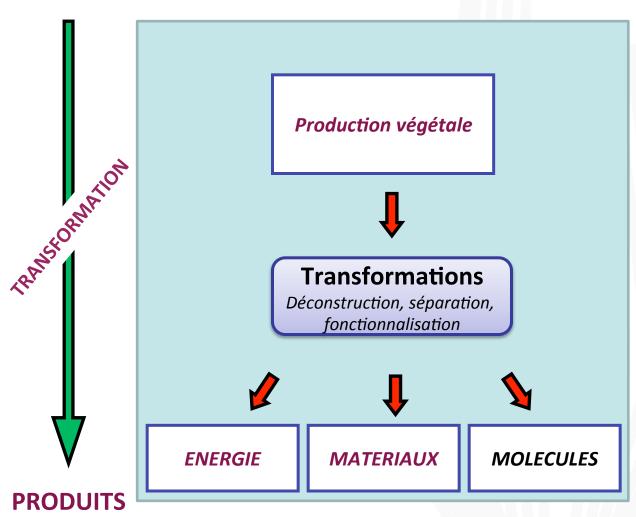
École Centrale Paris

leader, entrepreneur, innovateur

Production de biomasse végétale au niveau mondial : potentiel de cette ressource renouvelable pour produire énergie, matériaux et molécules

Prof. Patrick Perré
Directeur du Laboratoire de Génie des Procédés et Matériaux

(remerciements à Laurent GAZULL du CIRAD pour l'envoi de documents)



Point de départ : quelques chiffres

- Energie solaire = 92 000 GTEP/an (1 TEP = 42 GJ)
- Energie stockée par photosynthèse 79 GTEP/an (source AIE)
- Plantes terrestres 4/5, océans 1/5
- Consommation mondiale d'énergie : 12 GTEP/an (+2,5%/an)
- Alimentation humaine : environ 2 GTEP/an

Chimie verte (acception INRA)

BIOMASSE

Taillis à courte rotation (Salix)

Jusqu'à 12 t/ha/ an (matière séche)

Plantations d'eucalyptus (Brésil)

5 à 7 ans de rotation

Plantations d'eucalyptus (Brésil)

Jusqu'à 30 m³/h

Betterave à sucre

70 t/ha/an, dont 12 t de sucre

Betterave à sucre

Betterave à sucre

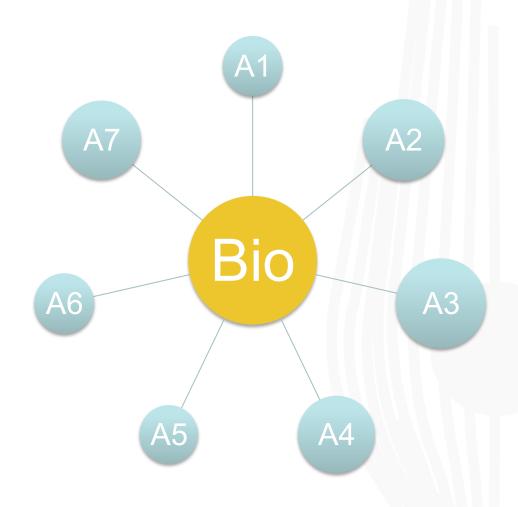
Canne à sucre (Brésil)

68 t/ha/an, dont 10 t de sucre et 9 t de fibres

Séminaire Idées -18 nov. 2013

Canne à sucre (Brésil)

10 t en 8 heures



700 t par jour

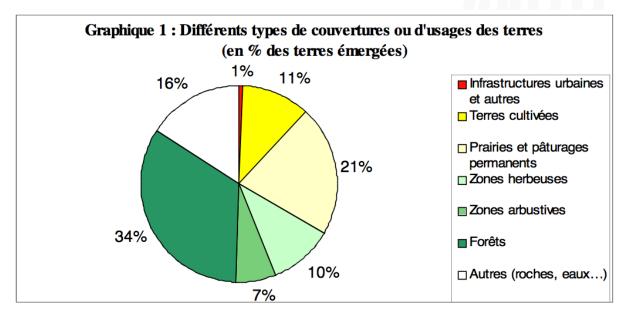
Canne à sucre (Brésil)

Biorefinery/agrorefinery

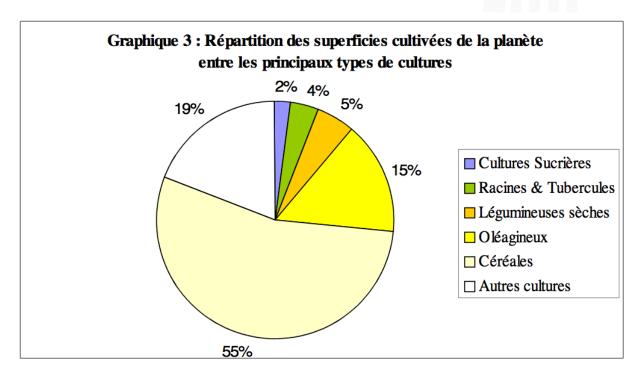
Ordres de grandeur

Production	Rendement	Taille usine	Distance approvision ^t	Produits
Betterave	70 t/ha/an, soit 12 t de sucre	20 000 t/j pendant 100 jours	9,6 km	sucre, ethanol (7400 l/ha), molécules
Canne	68 t /ha /an, soit 2) t d si cre 9 t de libres	5 <mark>Λ</mark> γill <mark>e</mark> ns <mark>t/</mark> a	R	sucre, ethanol (63)0 l/ha), molécules, énergie
Pâte/ papier	10 m³/ha/an	500 000 t/an	17,8 km	Pâte et papier, énergie, liqueurs noires
Scierie résineux	12 m³/ha/an	1 million m³/an	16,3 km	sciages, plaquettes, sciure
Scierie feuillus	8 m³/ha/an	20 000 m³/an	2,8 km	sciages, plaquettes, sciure
Charb végétal	GRO-	environ 150 000 m³ de bois		cha bon Shergie, pyroligneux
Bio- rafinnerie	10 t/ha/an	500 t/heure	33,3 km	matériaux, énergie, molécules

École Centrale Paris


leader, entrepreneur, innovateur

Potentiel de production au niveau mondial


Les terres émergées

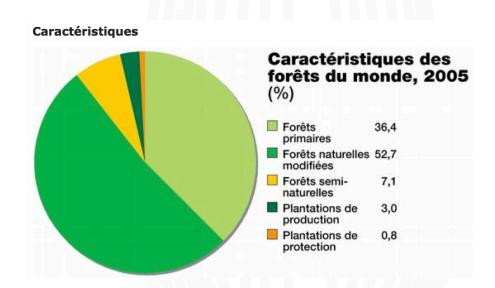
- Terres émergées (29%) : 15 milliards ha
- Terres arables et cultivées : 1,5 milliard ha
- Forêts : 4 milliards d'ha

Sources: d'après SAGE, GTAP

Affectation globale des terres cultivées

Sources: d'après SAGE, GTAP

Les forêts sur la planète (4000 millions d'ha)

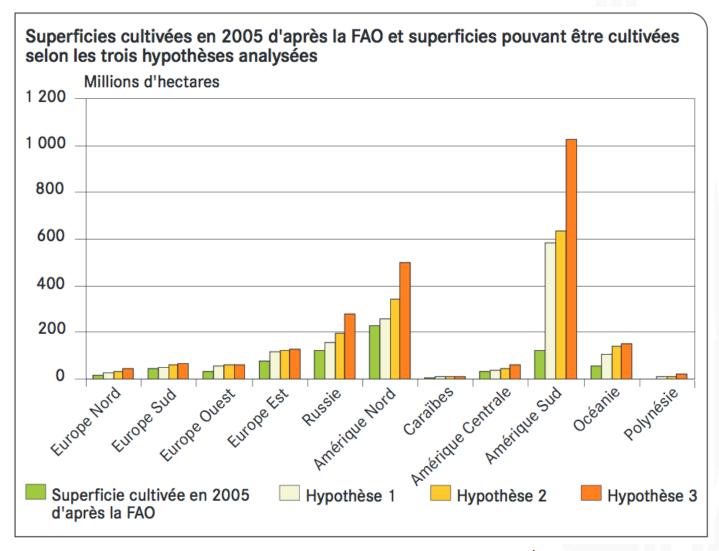

En % de la superficie forestière mondiale

Tropicale	52 (± 2	000
Порісаїє	millions	d'ha)

Subtropicale
$$9 (\pm 360 \text{ millions}$$
 d'ha)

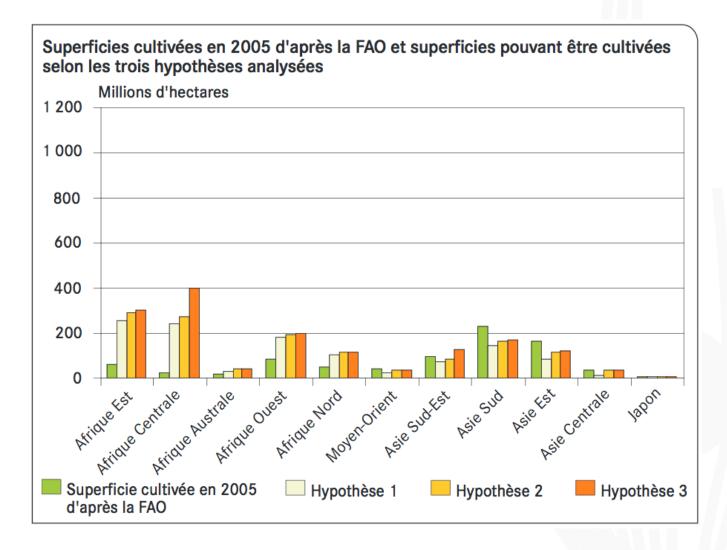
Tompóróo	13 (±	520	millions
Tempérée	d'ha)		

Boréale / $25 (\pm 1 000)$ Polaire millions d'ha)


Production: 3400 millions de m³, soit environ 1 m³/ha/an

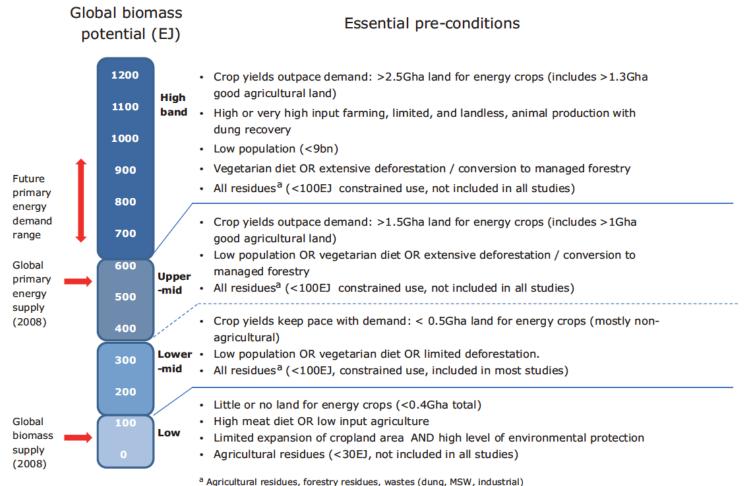
Sources: ONF et FAO

Terres arables


- Actuellement : 1500 millions d'ha
- Accroissement potentiel de
 - 1000 millions d'ha (terres jusqu'à modérément convenables, sans forêts et infrastructures)
 - 1450 millions d'ha (terres peu convenables, sans forêts)
 - 2350 millions d'ha (avec 1/3 des forêts).

Terres arables

CENTRE D'ÉTUDES ET DE PROSPECTIVE Analyse N° 18 - Mai 2010


Terres arables

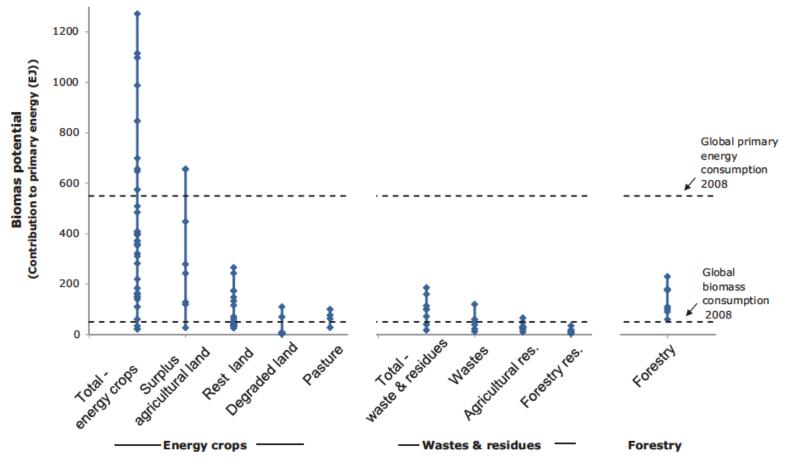
CENTRE D'ÉTUDES ET DE PROSPECTIVE Analyse N° 18 - Mai 2010

Potentiel de production au niveau mondial

Figure ES1: Common assumptions for high, medium and low biomass potential estimates

Potentiel de production au niveau mondial

Table 1: Overview of the global potential of biomass for energy (EJ per year) to 2050 for a number of categories and the main preconditions and assumptions that determine these potentials [Sources: Berndes et al., 2003; Smeets et al., 2007; Hoogwijk et al., 2005a].

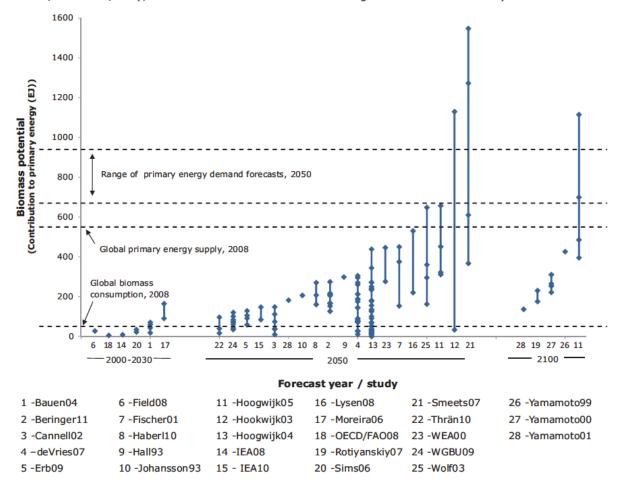

Biomass category	Main assumptions and remarks	Energy potential in biomass up to 2050
Energy farming on current agricultural land	Potential land surplus: 0-4 Gha (average: 1-2 Gha). A large surplus requires structural adaptation towards more efficient agricultural production systems. When this is not feasible, the bioenergy potential could be reduced to zero. On average higher yields are likely because of better soil quality: 8-12 dry tonne/ha/yr* is assumed.	0 – 700 EJ (more average development: 100 – 300 EJ)
Biomass production on marginal lands.	On a global scale a maximum land surface of 1.7 Gha could be involved. Low productivity of 2-5 dry tonne/ha/yr.* The net supplies could be low due to poor economics or competition with food production.	<60 – 110 EJ
Residues from agriculture	Potential depends on yield/product ratios and the total agricultural land area as well as type of production system. Extensive production systems require re-use of residues for maintaining soil fertility. Intensive systems allow for higher utilisation rates of residues.	15 – 70 EJ
Forest residues	The sustainable energy potential of the world's forests is unclear — some natural forests are protected. Low value: includes limitations with respect to logistics and strict standards for removal of forest material. High value: technical potential. Figures include processing residues	30 - 150 EJ
Dung	Use of dried dung. Low estimate based on global current use. High estimate: technical potential. Utilisation (collection) in the longer term is uncertain	5 – 55 EJ
Organic wastes	Estimate on basis of literature values. Strongly dependent on economic development, consumption and the use of bio-materials. Figures include the organic fraction of MSW and waste wood. Higher values possible by more intensive use of bio-materials.	5 – 50 EJ
Combined potential	Most pessimistic scenario: no land available for energy farming; only utilisation of residues. Most optimistic scenario: intensive agriculture concentrated on the better quality soils. In parentheses: average potential in a world aiming for large-scale deployment of bioenergy.	40 – 1100 EJ (200 - 400 EJ)

^{*} Heating value: 19 GJ/tonne dry matter.

IEA BIOENERGY: EXCO: 2007:02

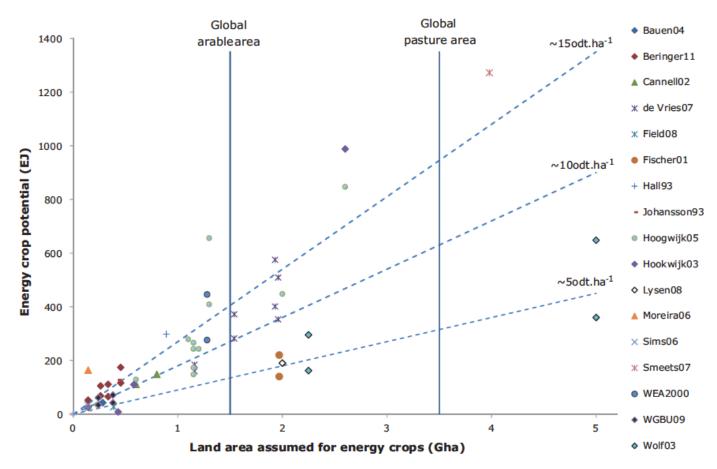
Potentiel de la production de la biomasse

Figure 4.2: Indicative contributions to global biomass potential estimates from different biomass sources and land classes



Biomass source

La variabilité des projections

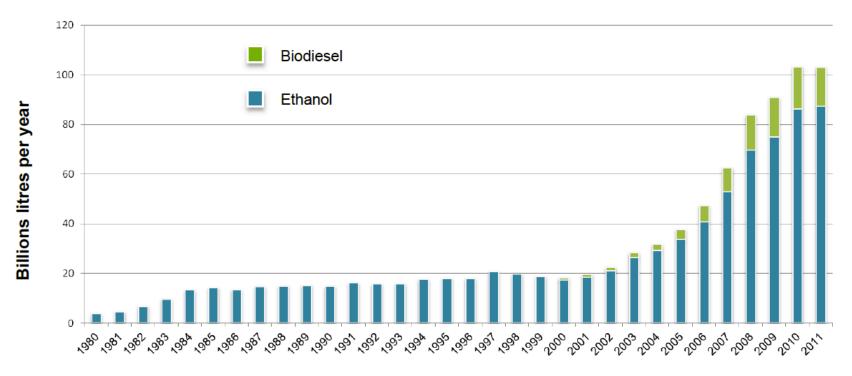

Figure 4.1: Biomass potential forecasts by individual study and timeframe.

(NB: figures are those reported in the original study and incorporate different definitions of potential (theoretical, technical, economic, etc.); studies also differ in terms of the range of resources included.)

Explication des écarts de prédiction

Figure 5.1: Land allocated to energy crops and assumed energy yield

École Centrale Paris


leader, entrepreneur, innovateur

Quelques données sur les biocarburants

Production de biocarburants

Figure 2 Biofuel production, 1980–2011

Source: HLPE, 2012a.

Couplage prix aliment/prix énergie

450 Used for ethanol Ethanol price Sugar and ethanol index price (Jul 2004=100) 600 Sugar price 400 Used for sugar Sugarcane production (million tonnes) 51% Production cost of ethanol 350 500 300 400 250 300 200 48% 150 200 100 49% 100 53% 50 52% 32% 1982/1983 1992/1993 2002/2003 2012/2013 Sugarcane 166.1 Mt 223.4 Mt 316.1 Mt 588.4 Mt 5.82 Mm³ 11.73 Mm³ 12.49 Mm³ Ethanol 23.21 Mm³ 22.38 Mt 38.24 Mt Sugar 8.86 Mt 9.26 Mt

Figure 11 Sugarcane production, ethanol and sugar production and prices in Brazil

Couplage prix aliment/prix énergie

313.9 Fuel ethanol Ethanol price Feedgrain use 44.6% Corn price 300 251.9 **Exports** Corn and ethanol index price (1982=100) US corn production (million tonnes) 7.5% 201.5 200 168.6 200 5.2% 0.5% 69.4% 41.1% 63.6% 68.9% 100 100 35.9% 25.8% 23.1% 14.3% 1980 1990 2000 2011

Figure 10 Ethanol and corn prices, and US corn production for fuel, feed and exports

Source: Adapted from Bastianin, Galeotti and Manera (2013). Data from http://faostat.fao.org for corn production. Corn and ethanol prices, shares of fuel, food and export uses from Batianin, Galeotti and Manera (2013)

Efficacité de la production de biocarburants

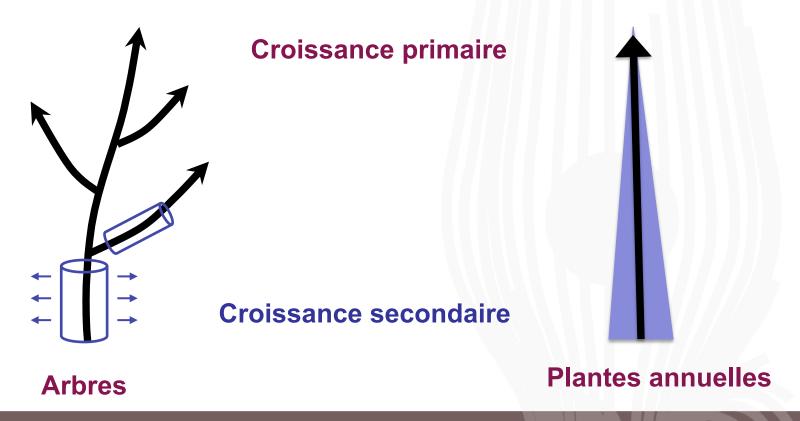
Table 3 Net energy return on investments for different fuel types

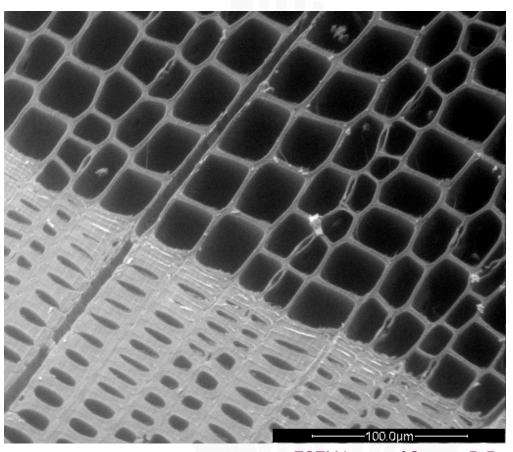
Fuel	EROI	Countries/regions included in the evaluation
Cellulosic ethanol	2-36 (5.4)	United States (switchgrass)
Corn ethanol	0.8–1.7	United States, Colombia, China
Wheat ethanol	1.6–5.8	United Kingdom, Netherlands, Switzerland, Australia
Sugar-beet ethanol	1.2	United Kingdom
Soybeans biodiesel	1.0–3.2	United States, Argentina, Brazil, China, South Africa
Sugar-cane ethanol	3.1–9.3	Brazil, Mexico, Southern Africa
Molasses	0.6-0.8	Thailand, Nepal
Cassava	1.3–1.9	China, Thailand
Sweet sorghum	0.7–1.0	China
Rapeseed biodiesel (Europe)	2.3	United Kingdom
Waste vegetable oil biodiesel	5–6	
Palm oil biodiesel	2.4–2.6	Southeast Asia, Thailand
Jatropha	1.4–4.7	China, India, Thailand, Africa
Algae	0.01–7.01	

Source: Compilation by authors, based on WWI (2006); Pimentel and Patzek (2005); Shapouri et al. (2004); Quintero et al. (2008); Kim and Dale (2008); Hill et al. (2006); Royal Society (2008); Grant et al. (2008).

École Centrale Paris

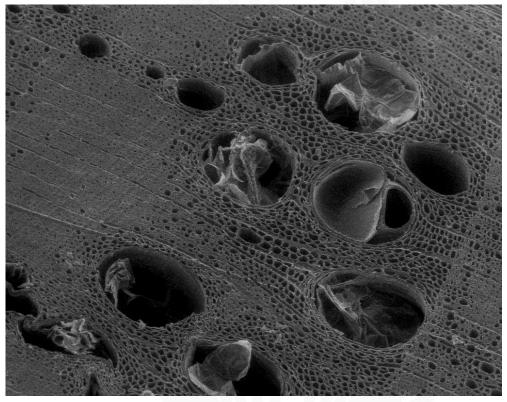
leader, entrepreneur, innovateur


Valorisation plante entière : tiges pour le nonalimentaire

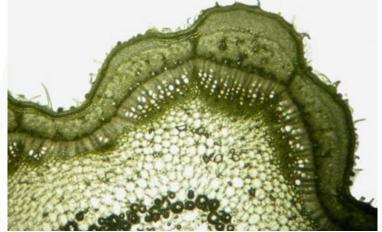


Rôles de la tige dans les plantes

Système vasculaire
Support mécanique
Adaptation du support mécanique
Résistance aux agressions



ESEM image of Spruce, P. Perré



ESEM image of Oak, P. Perré

Lin (*Linum sp*)

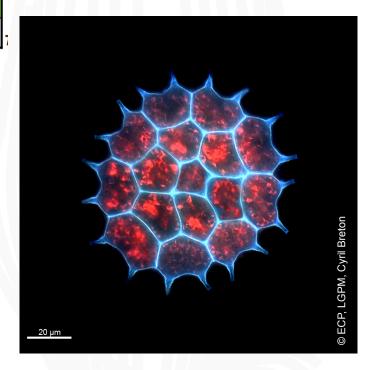
Chanvre (Cannabis sativa)

Sources : http://www.snv.jussieu.fr/bmedia/textiles
http://www.chanvre.com/

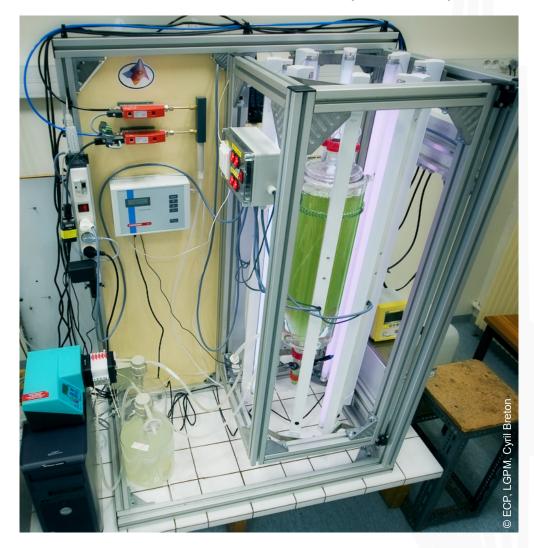
École Centrale Paris

leader, entrepreneur, innovateur

Ne pas oublier les micro-algues



Micro-algues

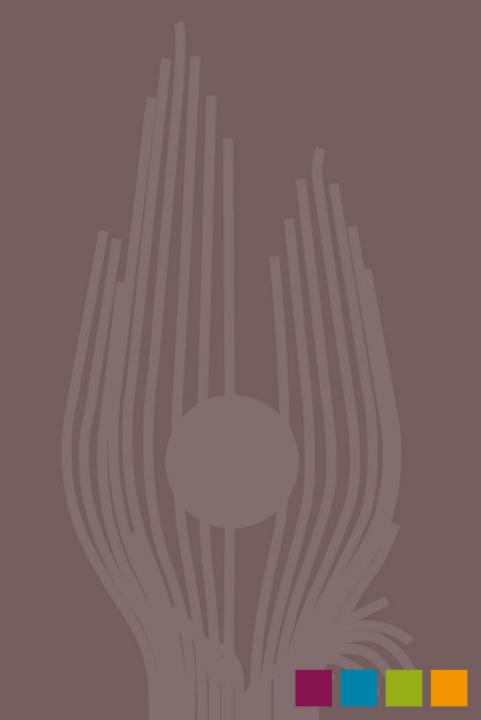

	Microalgues	Plantes C4	Plantes C3
Productivité maximale (T.ha-1.an-1) Rendement photosynthétique	150-180 ~ 6 - 7.5 %	60 ~ 2.5 %	30 ~1.25 %
Productivité observée (T.ha ⁻¹ .an ⁻¹)	50-70	10-30	10-15
Productivité en lipides potentielle (T. ha ⁻¹ .an ⁻¹)	75-90		
Productivité en lipides observée (T. ha ⁻¹ .an ⁻¹)	15-20	3	1.5
Coûts de production (\$.kg-1)	0.4 - 40 🗆	0.04	0.04

Site ANR, Projet Algomics ANR-08-BIOE-002

Photo-bioréacteur de laboratoire (LGPM)

Production de biocarburant par micro-algues (Alicante)

Photo-bioréacteur urbain


Source : site société Ennesys

École Centrale Paris

leader, entrepreneur, innovateur

Merci pour votre attention

