

Mais où est passée la croissance verte ?

Nadia Maïzi, MINES ParisTech

Ce que l'on définit par vert

• Epreuve anticipée du baccalauréat en Sciences séries ES et L du Mardi 23 Juin :

A propos du Thorium 232 : indiquer si l'expression futur nucléaire vert est appropriée ?

Mais Vert pour signifier quoi?

- Emissions de GES
- Caractère renouvelable
- Abondance des ressources
- Limitation des externalités

Or souvent 'Vert' conduit à un amalgame avec les ressources renouvelables pourtant

L'équation verte est plus complexe qu'elle en a l'air

•Démographie:

- Croissance des pays émergents
- Remplacement des capacités dans les pays développés
- Densification urbaine:
 - •50% de la population dans les villes aujourd'hui, 80% in 2100
 - •réseaux d'énergie à forte densité

• Terre: Un système chimique fermé

- Déplétion des ressources fossiles (et fissiles):
 - Peak oil : 2020
 - Peak gas : 2030
 - Environ deux siècles pour le charbon et l'uranium
- Changement climatique:
 - •La génération électrique est à l'origine de 45% des émissions de CO_2
 - •L'efficacité du système électrique est de seulement 27% (35% pour l'ensemble des vecteurs)

• Terre: Un système énergétique ouvert

- L'énergie domestiquée est 10.000 fois plus petite que le flux naturel (solaire, éolien, géothermie, marine)
- Mais les apports naturels sont très dilués et intermittents

Diviser par 4 l'intensité carbone

Les faits

x 2

Demande d'énergie en 2050 Demande d'électricité en 2030

Source: IEA 2008

L'impératif

<u>.</u> 2

les émissions de ${\rm CO_2}$ pour éviter des changements climatiques d'amatiques d'ici 2050

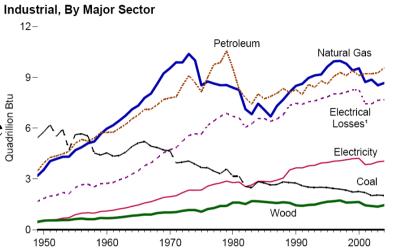
Source: GIEC 2007, figure (vs. 1990 level)

Energy scarcity,
Demography
Resource access
Energy prices

GHG emissions Climate change

Dispersed generation vs. dense urban zone

Reliability of supply

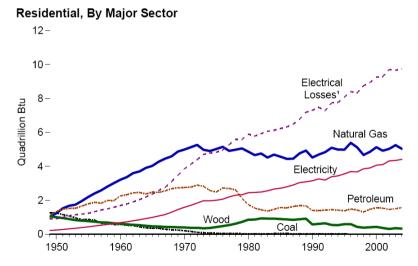


Des conséquences qu'il faut savoir maitriser

Quel que soit :

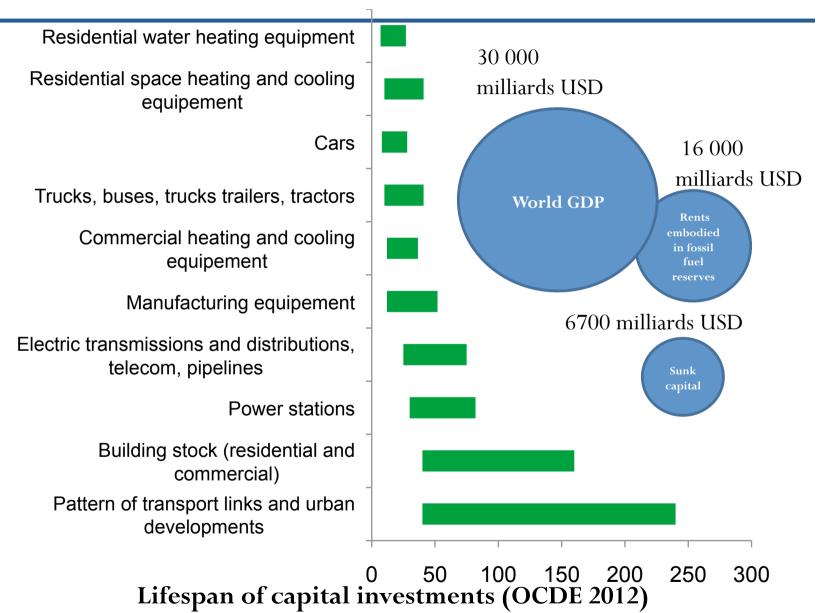
le secteur le pallier technologique le cycle économique

le cycle é aux USA



Une évolution d'autant plus critique que l'électricité s'impose comme le

vecteur d'énergie universel



Productivisme et inertie des investissements

Nadia Maïzi - CMA - MINES ParisTech

En ligne, le déploiement du renouvelable

Accompagner la croissance de la demande

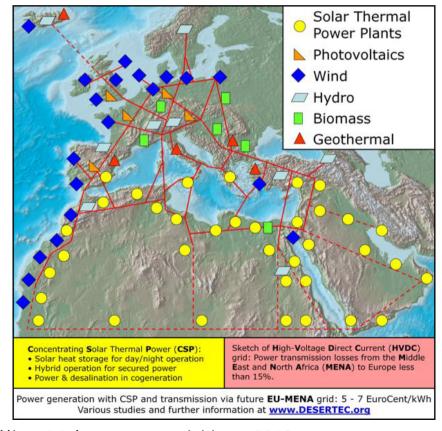
- Déployer les solutions renouvelables en ligne avec les cibles institutionnelles :
 - Niveau national (loi TE) : 32% de renouvelable dans la consommation finale d'énergie et 40% dans la production d'électricité en 2030
 - Niveau Européen : 20% consommation d'énergie finale 2020/27% à 2030.
- Les perspectives de déploiement du renouvelable après la chute des coûts du PV en 2011 (d'après l'AIE)
 - 18% en 2010 du mix primaire
 - 36 % en 2030 (basées sur les technologies existantes)
 - % plus élevés dans le mix électrique

Croissance verte: vision productiviste

- Plus de la moitié de la capacité de production d'énergie installée dans les 15 dernières années est renouvelable
- Pour les pays en développement : **plus de la moitié** des investissements
- Des drivers différentiés par région :
 - Sécurité d'approvisionnement
 - Changement climatique
 - Préoccupations environnementales : pollution (eau, air), raréfaction ressources (eau)

Finalement une reproduction du schéma actuel en direction des **énergies décarbonées** avec des externalités différentes :

- sur les ressources de structure : cuivre, acier, matériaux rares
- sur les systèmes de production



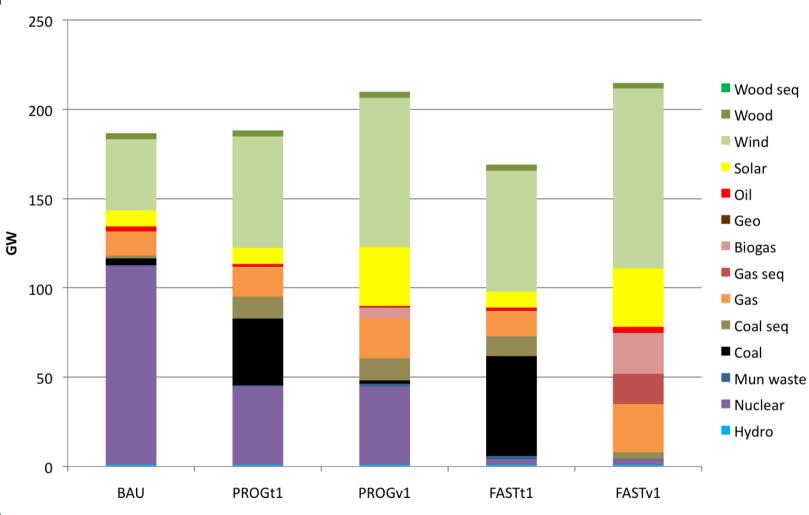
Les enjeux d'une transition énergétique intelligente

Démêler l'imbroglio de solutions

- pour la génération
- d'instruments et mesures
- de bouquets techniques

Production d'électricité tout renouvelable en 2050. Source : Desertec.

Nadia Maïzi - CMA - MINES ParisTech



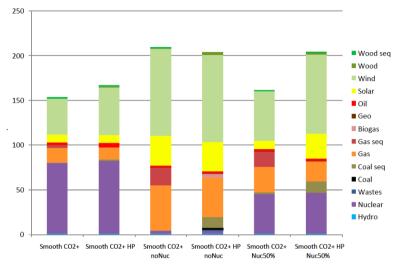
10

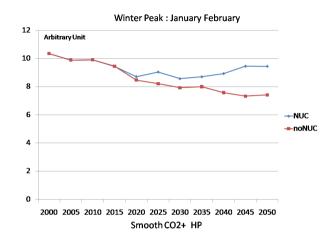
Sortir du nucléaire en France

Capacités cumulées de production d'électricité

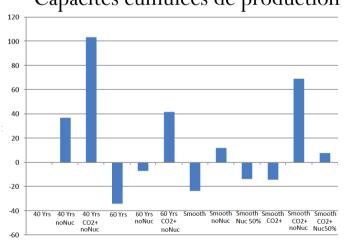
N. Maïzi, E. Assoumou, Future prospects for nuclear power in France, Applied Energy (2014), pp.849-859, DOI information: 10.1016/j.apenergy.2014.03.056.

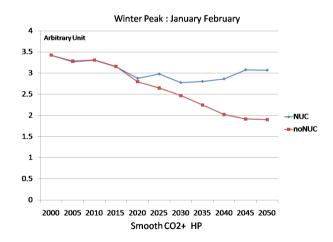
De la plausibilité des systèmes électriques




La fiabilité

Réconcilier le court terme et le long terme


Et conséquences de la pénétration du renouvelable



Capacités cumulées de production

Réserves dynamiques / fiabilité

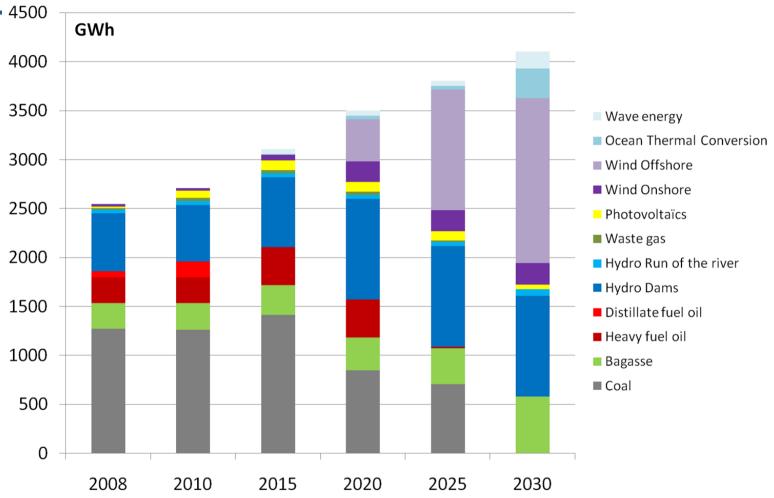
Surcoûts/BAU

Un arbitrage qui repose sur le niveau de fiabilité et l'acceptation sociale du surcoût.

Nadia Maïzi - CMA - MINES ParisTech

Exploiter l'océan, les vents, le soleil

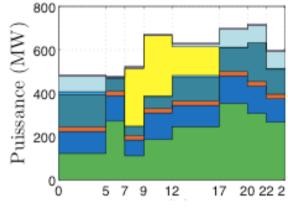
Nadia Maïzi - CMA - MINES ParisTech

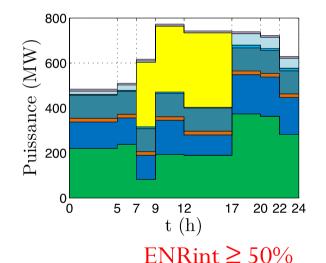


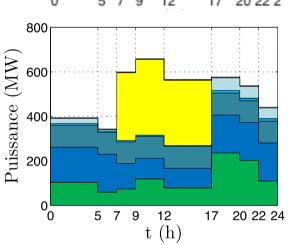
La Réunion : les conditions pour une île 100% renouvelable en 2030

Production d'électricité pour un scénario 100% renouvelables en 2030 (Mer)

M. Drouineau, E. Assoumou, V. Mazauric, N. Maïzi, Increasing shares of intermittent sources in Reunion Island: impacts on the future reliability of power supply, Renewable and Sustainable Energy Reviews. 06/2015; 46. DOI: 10.1016/j.rser.2015.02.024




Un jour d'été type en 2030


à La Réunion 100% renouvelable:

Perte en fiabilité

Apport de combinaisons techniques

ENRint ≥ 50%

→ Capacités: 6

7% capacités : 9.4

Nadia Maïzi - CMA - MINES ParisTech

S. Bouckaert, P. Wang, V. Mazauric, N. Maïzi, Expanding renewable energy by implementing dynamic support through storage technologies, International Conference on Applied Energy, Taipei, 30 May- 2 June 2014.

Un paradigme de croissance à rediscuter

« Travaillons donc à bien penser, c'est le principe de la politique. »

sans quoi TOUTES les transitions sont envisageables

Et sans négliger la PLACE du citoyen.

www.modelisation-prospective.org www.cma.mines-paristech.fr

Nadia Maïzi - CMA - MINES Paris Tech